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ABSTRACT

Advancements in single-cell technologies have transformed transcriptomic studies across brain regions, enhancing our understanding of the human brain. However, pinpointing cell-type specificity in neurological disorders remains challenging due to 
developmental variations. To address this, we analyzed neurological disorder gene expression dynamics using a single-cell transcriptome dataset spanning multiple developmental stages. Our atlas, comprising 393,060 cells and nuclei, reveals distinct 
temporal expression patterns of disorder risk genes, including autism, across neuronal lineages. We identified a concentration of neurological disease traits within fetal cell types, providing insights into the dynamic regulation of risk genes during brain 
development. This study offers a foundation for comparing cell type-disorder associations over time, advancing our understanding of neurological diseases. 

• Constructed a single-cell atlas of the developing human brain, analyzing 393,060 single brain cells to reveal the cellular 
composition and dynamic changes during early brain development, focusing on the cellular and temporal specificity of 
neurological disorder risk genes.

• Revealed distinct expression patterns of autism risk genes (e.g., FOXP2) at different developmental stages. Also identi-
fied the role of MEF2C in aligning expression patterns with autism risk genes and highlighted potential sex differences 
in IL17RD expression related to MIA suscerptibility.  

• This study faced limitations such as incomplete representation of individual variability and developmental stages, par-
ticularly neonatal and early childhood periods. Future research should aim for a more extensive and diverse sample 
collection to better understand the genetic constitution’s role in early brain development and its impact on disorders.
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Figure 2. Cellular trajectories of neurodevelopmental disorder risk genes in neuronal lineages. A. Gene set enrichment test for 
neurological disorder genes. A one-sided Fisher’s exact test was used to compute statistics with multiple comparisons by Bonferroni cor-
rection. B. UMAP visualizations of estimated developmental lineages in neuronal cell types. C. Distribution of cells by major cell type 
and developmental stage across pseudo-time and temporal patterns of late neuronal IPC marker (NEUROD6), MGE-derived inhibitory 
neuron markers (SST, LHX6, and PVALB), and CGE-derived inhibitory neuron markers (ADARB2, VIP, and LAMP5). Cells in the first 
one-third portion of cells with pseudo-time close to 0 are labeled as "Early", the subsequent portion as "Middle", and the final one-third 
of cells with the latest pseudo-time are designated as "Late".  D. UMAP visualizations of developmental stages in neuronal cell types. 
E. Expression profiles of neurodevelopmental disorder risk genes across pseudo-time for each lineage. 
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Figure 3. Regulatory landscape in early brain development. A. Heatmap illustrating regulon activities of transcription factors across 
clusters. B-C. Transcription factor-target networks depicting regulation of glioblastoma risk genes by HMGB3 and YBX1 (B), and regula-
tion of autism risk genes by MEF2C (C). Prediction confidence was normalized from 0 to 1. The top 25 targets high-confidence targets 
for MEF2C are shown. D. Expression of MEF2C over gestational days. The sample-wise mean of log-normalized MEF2C expression 
was computed using a pseudo-bulk method. Clusters with at least 4,600 cells (C0-C22) were used. E. Correlation between the sam-
ple-wise mean of log-normalized MEF2C expression and expression of GRIN2B, SCN2A, andCACNA1D. F. Expression of GRIN2B,
SCN2A, and CACNA1D across developmental ages. 
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Figure 4. Pathway enrichment in early brain development. A. Violin plot displaying pathway module score as the average expression 
level of pathway genes adjusted for control features. B. Violin plot for pathway module score across major cell types. C. UMAP 
visualization of z-score normalized IL17RD expression. D. Expression of IL17RD over gestational days, divided by gender. 
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Figure 1. Integrated single-cell 
atlas of developing human brain. 
A-D. Uniform Manifold Approximation 
and Projection (UMAP) of the atlas, 
colored by (A) integrated datasets, 
(B) major cell types, (C) developmen-
tal stages, and (D) Leiden clusters. E. 
Taxonomy of 41 Leiden clusters 
based on the scaled expression of 
marker genes. The stage and region 
with the highest proportion of cells 
(>35%) were designated.          

A B

C D

E RESULTSMETHODS

Schematic of atlas construction and 
downstream analysis. Single-cell and sin-
gle-nucleus RNA sequencing datasets from 
eight published studies were integrated. After 
applying quality control measures, gene 
name standardization, and batch effect cor-
rection, cells were clustered using the Leiden 
algorithm. Clusters were annotated based on 
developmental stages and brain regions, and 
major cell types were identified using marker 
genes. Downstream analyses involved tra-
jectory analysis and the inference of gene 
regulatory networks. 
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Figure 5. Cell type and temporal specificity in glioblastoma subtypes. Gene set enrichment test with driver genes and transcriptional 
signatures of glioblastoma. A one-sided Fisher’s exact test was used to compute statistics with multiple comparisons by Bonferroni cor-
rection. 


